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ABSTRACT

In contradistinction to the known theory on complex splines

which are defined on the boundary of a region~42N’§}, we define
complex planar splines on a region itself as a complex valued
continuous function which is defined piece-wise on suitable meshes

of that region. The main idea is to use non-holomorphic functions
as pieces, since holomorphic pieces would lead to just one holo-
morphic function on the whole region by a well known identity

theorem in the theory of functions in one complex variable.
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2.

“ Some of the techniques used are available from the theory
of finite elements. But also are considered new aspects, namely
mapping properties of a complex planar spline v and the differ-
ence f - v where f 1is in general a holomorphic function. For
triangular, rectangular, parallelogram meshes and meshes on cir-
cular sectors, explicit expressions are provided and also proper-

ties of the newly introduced complex planar splines are studied.

1. INTRODUCTION

In this paper we are concerned with the approximation of
complex valued functions by functions which we would like to call
complex pfanar splines.

In the current literature (see e.g. Ahlberg [1], Ahlberg-
Nilson-Walsh (2,3,41, Atteia (7], and Schoenberg {12,13]), complex
splines are defined on the boundary of a given region and are then
extended into the interior by Cauchy's integral formula:\ However,
this extension process is not easy to execute numericé&ly. There-
fore, we offer another approach here which in spirit originates
from the theory of finite elements. (For a comprehensive infor-
mation on this subject, see the references in Schwarz [15]). We
subdivide a given region into meshes and define a complex valued
function on that region piecewise on each mesh. The functions
defined on each individual mesh will be called efementis. The

vertices of the occurring meshes will be called gaid points and

the set of all grid points a grdd.
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F The minimum requirement we impose is the continuity of that

i piecewise defined function. Any such piecewise defined complex

T

function which is continuous will be called a complex planan
spline.
The continuity already has a very serious implication. If

i we would try to define a complex planar spline by holomorphic

. elements like polynomials, then by the well known identity theorem
‘ (e.g. Diederich-Remmert [9, p. 132, Theorem 60]) all the elements
represent just one holomorphic function. The consequence is that

it makes no sense to work with holomorphic elements. Therefore, we

e A e e e

have to use nonholomorphic elements.
Very simple nonholomorphic functions are polynomials in the

complex variable z and its complex conjugate z . These func-
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tions have the form

n .
i, -k
p(z,2) = ; E—o a5k zlz" aj ¢ ¢ - (1.1)
K=

The number

dp = max {3 + k:a. " # 0} (1.2)
j,k=0,1,...,n 3

will be called the degree of p . If 3 = 1 we shall say that

e g

p 1is finean, if 9p = 2 we shall say that p is quadratic,

for 9 = 3,4,5 we shall use the words cubdic, quantdic, quintic
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If we use the representation

z=x+ iy, z = x - iy (1.3)
then

X = %(z +2Z); y = g; (z - 2) . (1.4)

That means a function in the real variables x and y can be
transformed into a function depending on the complex variables

z and z , and vice versa.

Thus, a function u = u(z,z) may also be regarded as a
function in x and y . If u is continucusly differentiable

with respect to x and y , then we have

u, = u, +u; uy = i(uz - uE) , (1.5)
u,. - iu u_ + iu
u, = . SR uz = . SEEED SN (1.6)
2 2

If u is twice continuously differentiable, then

(1.7

In the sequel we treat trianqular, rectangular and paral-
lelogram meshes and meshes on circular sectors. The elements
defined on those meshes will be as simple as possible. Besides

i
the aspects known from the theory of finite elements, as, for 4
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instance, interpolating properties, computational aspects,
and an error analysis, there are new aspects which can be

summarized under the word mapping propeaties of the newly

defined complex planar splines. These new aspects concern

the following questions, among others:

(I) How close are complex planar splines to comformality?
(II) Are complex planar splines quasiconformal?
(III) Are complex planar splines open mappings?
(IV) TIs the boundary maximum principle valid for complex

planar splines?

In some cases these questions apply also to the difference
e = f - v between a certain function f and a c¢omplex planar
spline v .

Since the interpolating formulae for the complex case look
different than the corresponding formulae for the real case, we
believe that it is reasonable to state these formulae here. We
shall see that the complex interpolation and Lz—approximation
problem reduce to two real problems such that no new error analy-
sis is needed. But the situation changes for instance for the
uniform approximation problem.

Besides the approximation of functions by complex planar
splines, still another application seems possible, namely solving

complex differential equations like Beltrami's equation

f- = pf_ + (1.8)
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r without splitting it into real and imaginary parts. The
equation (1.8) was recently treated numerically by Weisel

167 for the case 1y = 0 by solving the corresponding real

o oambg o gk g

system with finite element techniques. A systematic treat-
ment of (1.8) can be found in Wendland [17]. Furthermore,

for the conformal mapping problem there also exists an invest-

T

igation by Bosshard [8] on the use of finite elements again by

treating corresponding real problems. Also in this case a

direct attack seems possible which then avoids the computation

of the conjugate function to the computed real part of the mapping.

Still another application is the automatic construction of

meshes with desired behavior. In many cases, for instance, it
is desirable to construct meshes which concentrate at a certain
point. An example is shown in Figure 1, where the range of an

interpolating complex planar spline is sketched. ]

Figure 1 ;

These applications provide motivation for our study of com-

plex planar splines and their basic properties.

2. LINEAR COMPLEX PLANAR SPLINES ON TRIANGULAR MESHES

A trni{angle A 1is defined by its three vertices Pl'Pz’P3

which are supposed to be three pairwise different complex numbers
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not located on a straight line. The three edges of A will j

be designated by P1 P2 ’ P2 P3 ' P3 P1 where the order of
the indices is irrelevant.
We first investigate one single element on a triangle A .

We will use a linear element of the form
o p(z,z2) =a + bz + cz ; a,b,c ¢ ¢ . (2.1)

For simplicity of the notation we shall write p(z) instead
of pl(z,z) .

’

It is clear that the interpolation problem p(Pj) = cj
j =1,2,3 has a unique solution for any three complex numbers

€1’§2'C3 . This solution is given by

a = (cl(Pzp3 - P2P3) + cz(Plp3 - P1P3) + g3(p192 - Plpz))/é . (2.2)

, b = (2;1(P2 - P3) + CZ(P3 - Pl) + 2;3(1>l - PZ))/cS , (2.3)
c = (Cl(P3 - P2) + CZ(Pl - P3) + C3(P2 - Pl))/6 ’ (2.4)
H where ‘
> i
!i
, § = 21 Im (P1P2 + 9293 + P3P1) . (2.5) g
! ‘-’

(Note that Re(z) and 1Im(z) mean the real and imaginary parts

‘ of 2z respectively.)

It is easy to see that any three points 211245123 € ¢ form

a triangle if and only if
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Im(2122 + 2,2z, + z3zl) # 0 (2.6)
and this property is invariant under translation.
For the standard tniangle Pl =0 , P2 =1, P3 = i the
above formulae reduce to
a-= Cl ' (2.7)
b =% (£ (i-1) +c, - ig,) (2.8)
3 'ty 2 3}
¢ =% (g i+ 1) +c, +iry) (2.9)
2 7t 2 3/ .
with
§ = =21 . (2.10)

For any given triangle with vertices Pl’Pz’P3 we can

construct three special elements pj ,J =1,2,3 by solving

pj(Pk) = ij . Jj,k =1,2,3 , where ij is the common Kronecker
sympbol. These elements are usually called ¢oim eflements. They
have the property that the general interpolating element p with

p(Pj) = Cj » J =1,2,3 can be written in the simple form

3
p = 21 ty Py (2.11)

Their importance lies in the fact that they can be used to
construct a basis for the linear space of all complex planar

splines, as will be seen later.
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Definition 2.1. A linear element p = a + bz + cz for any

a,b,c ¢ ¢ is called degenerate if |b| = |c]
Let R be a region in ¢ and f : R~ ¢ a mapping
which has continuous partial derivatives fz and f; . If

f 1is quasiconformal, the numbers

£, (2)} + [£5(2) ]

d(z) = (2.12)
|[£,(2) | - [£5(2)]
and
f-(z)
p(z) = 2 (2.13)
fz(z)

are called difatation quotient and complex dilatation at the
point 2z respectively (Lehto-Virtanen [10, p. 52 & 191]). We
always have d(z) 2 1 . 1In case d(z) =1, z could be called
a conformal point. If d(z) =1 for all =z , then f 1is con-
formal.

The following theorem gives some properties of a linear

element p .

Theorem 2.1. A linear element p(z) = a + bz + ¢z , a,b,c ¢ C

has the follcwing properties:

1. I_f_ zl'z2 € ¢ ’

then

p({l - N)z; + xz,) = (1 - N)pl(z,) + Ap(z,)
1 2 1 2 (2.14)

for all X ¢ IR
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2. The range of p applied to a triangle is again a triangle

if and only if p is non-degenerate.

3. p 1is an orientation preserving homeomorphism if and

only if |b| > |c| .

4., p 1is an open mapping if and only if p is nondegenerate.

5. p is quasiconformal if and only if |b| > |c| . 1In that

case its dilatation is a constant given by

_ bl + |e (2.15)
a = ‘b - Tc
and the complex dilatation is a constant given by
p o= g . (2.16)

6. If we apply p to an angle 1 , 0 < 1 < 7 the angle
, ki€ ang’e

T is distorted by the angle

) 2 = o
I = arctan {cl ; Re(bc; - Im(bc) tan T (2.17)
Im(bc) + 5(!c| - |bl%)Ytan T - %]b + c|2 cot T

Proof: Properties 1-5 are immediate. The proof of property 6
follows by going through standard computations.

We now come to another important application of Theorem 2.1.

Definition 2.2. Two triangles Dyr B, are called neighbons or

nei{ghboning if they share a common edge.
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Figure 2

Theorem 2.2. Let Al'AZ be two neighboring triangles with

the common edge Pl Pz . (see Figure 2). Further let pj
be a linear element in Aj 3 =1,2 . If

Py (Py) = py(Py) 4 3 = 1,2 (2.18)
then

2

pl(z) = pz(z) for all =z « P1 P, , and consequently

pl(z) for z ¢ A, ,
p(z) = (2.19)
pz(z) for z ¢ A

is continuous on Al U Az .

Proof. Follows directly from Theorem 2.1 (property 1l).

Now if we subdivide a region into triangular meshes and

define a linear element in each mesh we obtain a complex planar
spline if we impose condition (2.18) for each pair of neighbor-

ing triangles. 1In the triangulation, however, we do not allow

that a vertex of any triangle is interior to any other edge.

More specifically the triangulation has to be propenr (Prenter

(11, p. 1271).

e a
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The form elements introduced earlier are used to construct
a basis for the linear space V of all complex planar splines.
Let R be a region in ¢ , subdivided into finitely many tri-

angles and Pl, Pz,..., PN its grid points. A complex planar

spline associated with the gridpoint P. and defined b
i y

will be called a (global) form function. It can be constructed
piecewise from the (local) form elements already known. Assume

that T,,T

1 2,...,T

K are the triangles which have Pj as a common
J
vertex. Then combine those form elements defined in

Tl,T2,...,T which have the value one at Pj and zero at the

k.
]

two other vertices with the zero elements on all other triangles.

pre e V>

A complex planar spline in general does not represent an

Clearly Vv = Vv

open mapping even if all elements are not degenerate. To see

this we define a complex planar spline on the square

0
1
—
N
o
A
3
N
[7aY
p—t
~
o
A

Im z < 1} , (2.20)

A, =4z 0+ Rez + Imz -1} , (2.21)

L AT a o s

A, ={z ¢Q : Re z + Imz > 1}, (2.22)
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and define

v = (2.23)
1 +1i-1iz for z e A

which is then a complex planar spline on Q .

However, the range of Q under v is Al such that the
range of any open set in Q containing parts of the diagonal
of Q 1is not open.

But we have the following Lemma (where proof is obvious).

Lemma 2.1. If a complex planar spline represents a univalent i

function it is an open mapping.

A consequence of this Lemma is the following.

Theorem 2.3. Let v be a complex planar spline which inter-

polates a univalent, holomorphic mapping f on the grid points

of a sufficiently fine triangular grid which is inside of the

domain of definition of f . Then v is univalent and open.

Proof. Since £ 1is conformal, a small triangle is mapped such
that the images of the three vertices form a triangle. There-
fore, the interpolating complex planar spline maps the triangular
grid onto another triangular grid in a univalent way. The result

follows from Lemma 2.1.

Lemma 2.2. Let f be a holomorphic function in a region R and

g a holomorphic function in R=1{z :2c¢€ R} . Define a function




ey

Proof: It is sufficient to show that |h

14.

h on R by h(z) = f(2) +g(z) , ze¢ R. If h is not con-

stant, then |h| does not admit a maximum in R .

2 . .
| has no maximum in
R . If A represents the Laplace operator as defined in (1.7)

we obtain
2 2 2 2
AlR|® = a|n] = = 4(J£,]7 + |gz|") > 0

But this implies that |h|2 is subharmonic. Since h is not
constant, |h|2 does not admit a maximum in R (Ahlfors (6,
p. 2451).

Particularly a non-constant linear element p itself has
the property that it admits no maximum in the interior of the
triangle in which it is defined. This is a stronger property
than property 4 of Theorem 2.1.

Clearly, a complex planar spline is not subharmonic in gen-
eral. As an example take an interpolating spline which is 1

at one interior gridpoint and zero at the other grid points.

3. QUADRATIC COMPLEX PLANAR SPLINES ON

RECTANGULAR AND PARALLELOGRAM MESHES

First we study splines on rectangles whose sides are
parallel to the axes. Such a rectangle [] (called quabla
in Physics) 1is defined by its four vertices Pl'PZ’P3’P4 which

are to be understood as pairwise distinct complex numbers with

Im P, = Im P

Im P3 = Im P4 + Re Pl = Re P, , Re P2 = Re P

1 2!

arranged in positive orientation.

4
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We first investigate one single element on a rectangle [ ]
A quadratic element of the form

p(z) = a + bz + cz + d(z2 - Ez) , a,b,c,d € ¢ (3.1)

will be used. That the use of this element is reasonable will
be seen in Theorem 3.1. The interpolation problem

P.) = C.
p( J) CJ
four complex numbers Cl,Ez,C3,C4 , and this is as follows:

r 3 =1,2,3,4 again has a unique solution for any

_ 2 _ 52 - 2 _ 52
(3.2)
2 -2 2 -_—2
+ (P1 - Pl) Ly = (P2 - P2) C4) ’
b = (2/6)(—P3 g, + P, L, = Py L3+ P, CA) , (3.3)
c = (2/5)(P3 gy - P4 g, * Pl g = P2 ;4) . (3.4)
d = (l/d)(cl “ Ly, YLy~ Ty ) . (3.5)
where

5= 4(p, - P))(Py - P,) . (3.6)
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In the case of guadratic complex planar splines on rectan-

gular meshes, we have the following analogue of Theorem 2.1.

Theorem 3-1. Let P,Q any two distinct points of ¢ and

p a quadratic element as defined in (3.1) with 4 # 0 .

Then

p((l = )P + AQ) = (1 - M)p(P) + Ap(Q) for all A ¢ [0,1] (3.7)

if and only if the straight line through P and Q is parallel

to the x- or y- axis.

Proof. Set 2, = (1 - )P + AQ . Then because of Theorem 2.1

and & # 0 , (3.7) is equivalent to

2

22 32 = (1 - (% - PY) + 2% - 5% for all A e [0.1]. (3.8)

Let P =x+ iy and Q = u + iv . After routine computations
we deduce from (3.8) that x(v - y) = u(v - y) which yields the

assertion.

Definition 3.1. Two rectangles will be called neighbors or

neighboning if they share a common edge (Figure 3).
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Theorem 3.2. Let []l' []2 be_two neighboring rectangleg

whose sides are parallel to the axes, with the common edge

P1P2 (Figure 3). Let pj be a guadratic element of the form

(3.1) defined on [:_lj, j=1,2. If

(8%

then

pl(z) = p2(z) for all =z ¢ P1P2 .

Consequently

pl(z) for 2z € [] 1
p(z) =ﬁ (3.10)
pz(z) for =z € [:]2

>

is continuous on [:h v []2
Proof: follows directly from Theorem 3.1.

Now if we subdivide a region into rectangular meshes where
the sides of the rectangles have to be parallel to the axes

then we obtain a complex planar spline if we impose condition

(3.9) for each pair of neighboring rectangles.

Theorem 3.3. Let R be any region in ¢ , f a holomorphic

function in R and p a quadratic element as defined in (3.1).
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If f -p is not constant, then |f - p| does not admit a

maximum in R .

Proof: Since f - p is a sum of a holomorphic function in
z and a holomorphic function in Z , Lemma 2.2 applies and
yields the desired result.

This theorem applies particularly to p itself.

More information about the quadratic element p as defined

in {3.1) can be deduced from its Jacobi determinant

_ 2 _ 2
J = |p,l | P3| (3.11)
(see Lehto-Virtanen [10, p. 136]) which reads here:
J(z) = |b + 2dz]?% - |c - 2dz] >
5 ) _ _ o (3.12)
= |b|® - |c|® + 2(ab + dc)z + 2(db + dC)zZ .
The set
H={z : J(z) = 0} (3.13)
is either a straight line or a point in ¢ .
Definition 3.2. The quadratic element p(z) = a + bz + cz
+ d(z2 - 22) , a,b,c,d,z ¢ ¢ is called degjenerate if
g =db + dc =0 . (3.14)

Now, H of (3.13) is a straight line in ¢ if and only if p
is not degenerate. If p is degenerate then (3.14) implies

d=0 or |b|=|c|. If p is not degenerate then the




|
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straight line H forms the angle o with the real axis which

is given by

Re (db + dc)

tan a = — —
Im (db + dc)

r 0 < a <7 . (3.15)

Let us assume now that p 1is not degenerate. If the domain of
definition of p is any compact set S in ¢ which is located

in the half plane
+
H = {z: J(z) > 0} (3.16)

then p 1is locally an orientation preserving homeomorphism in
S which then is also quasiconformal in S since its dilatation
guotient (see 2.12) is bounded.

In order to find out whether p 1is a global homeomorphism

we study the solutions of
p(zz) - P(Zl) =0 . (3.17)
If we use the abbreviations
X =2, -2) ,Y =2, %2 (3.18)
equation (3.17) reads
p(z,) - p(z)) = x(b + dy) + x(c - dy) =0 . (3.19)

From this it follows that

d(plz) - plz))) + d(p(z,) = p(z))) = %0 + o =0,  (3.20)

where ¢ was already introduced in (3.14). 1If we use this equa-

tion to eliminate X from (3.19) we obtain




yo + 35 + |b]% - |c]® =0 (3.21)

in case x # 0 . Let J(zj) >0, j=1,2 . Then from 3.12

by forming J(zl) + J(zz) it follows that
2 2 ==
2(|bl® = |ec|®) + 20y + 20y > 0 , (3.22)

which contradicts (3.21).
To summarize: If p 1is not degenerate then it is
univalent in both half planes H' and H™ = {z : J(z) < 0} .
Since the domain of definition of p is a rectangle R
whose sides are parallel to the axes, one can find out whether
R c BV just by inserting a suitable vertex into J . To
explain that we distinguish four cases according to the

. . + .
special location of H in ¢ .

Case 1 : % <a<m and H' is a right half plane in ¢ .
Case 2 : o =0 and ' is an upper half plane in ¢ ,
or
0 < a < % and H' is a left half plane in ¢ .
Case 3 : % <a<m and H' is a left half plane in ¢ . ﬂ
Case 4 : « =0 and H' is a lower half plane in ¢ ,

or

0 < o < % and H' is a right half plane in ¢ .

The words feft, nignt, Lowen, uppen half plane are used in the

ordinary sense.
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Theorem 3.4. Let R be a rectangle whose sides are parallel

to the axes. Call P the lower left, P the lower right,

Proof: If we are in case j , j ¢ {1,2,3,4} , then J(Pj) > 0

1l 2
P3 the upper right and P4 the upper left vertex of R .

Further let p be a non-degenerate quadratic element (as

defined in (3.1)) on R . Then the mapping p is an orienta-

tion preserving homeomorphism and guasiconformal on R if and

only if J(Pj) > 0 where j is determined by the case number

j to which H' belongs, j ¢ {(1,2,3,4} .

is equivalent to R c H+ .

If for mnemotic reasons one would like to give that theorem
a name, then "goun cornen theorem" seems to be very suitable,
since all four corners of the rectangle R are involved.

Under the assumptions stated p will be an orientation
<nventing homeomorphism on R if and only if J(Pk) < 0 where

k = (j + 2)mod 4 and j 1is determined as before.

If a rectangle is subdivided in this way into m-+.n 1little
rectangles, then there are m-n elements having altogether
p = 4 m*n parameters. Further there are s =3 mn -m-n - 1
continuity conditions leaving p - s = (m + 1)(n + 1) parameters
free where (m + 1)(n + 1) 1is also the number of gridpoints.

Now we can adjust the element (3.1) to the case where the

rectangle has any position in the plane. 1If one of the edges of

a given rectangle forms the angle o with the x-axis then instead

of (3.1) one has to use
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p(z) = a + bz + cZ + d(z2 - eit0z2) | (3.23)

Since a parallelogram can be mapped by a linear transformation
2 of the type (2.1) onto a rectangle whose sides are parallel to
the axes one can also work with parallelograms.

If ay, 0y € ¢ with ay # Aa, for any X ¢IR , describe the
directions of the parallelogram grid, which means that the two
angles 8. , J = 1,2 with the real axis are given by
tan Bj = Re aj/Im a. » J = 1,2 then the fore-mentioned linear

J

transformation £ yields an element of the form

p(z) = a + bz + cz + d(a,z + ayz) (a,z + a,2) , a,b,c,d e ¢ . (3.24)

4, SPLINES ON DISKS AND CIRCULAR SECTORS

Let S be a circular sector. If we divide the radius into
k subintervals and the opening angle into £ - 1 subintervals,
we obtain in total k(f# - 1) meshes of two types which we would
call rectangufanr and triangular meshes respectively. The tri-
angular meshes contain the origin O of S whereas the rectan-

gular meshes do not contain the origin (see Figure 4).
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It is straightforward to use polar coordinates with respect
to the origin O of S 1in this situation. Therefore for rec-
tangular meshes we use an element of the form

p(z) = p(rem) =a+ br +cp +drp , a,b,c,d € ¢ . (4.1)
Let Pl,Pz,P3,P4 be the vertices of one specific rectangular

mesh in positive orientation such that ¢l = arg Py = arg P

2 ’
¢, =arg Py =arg P, , ry = |Py| = |[P,| , ry = [P, = [P,
(see Figure 5.)
Then the soclution of the interpolation problem
P.) =C¢. , . , J =1,2,3,4 4.2
P(Py) =t c]e¢3 p (4.2)
is given by
a = (r2¢2Cl - r1¢2§2 + rl¢lC3 - I‘2¢1C_,4)/6 ) (4. 3)
c = (—rzl;l + rlCZ - r1C3 + r2C4)/6 ’ (4-5)
and
- - - (4.6)
d = (r, Lo * Ty Cq 1/0 4
where
(4.7)

v l/(r2 - rl)(¢2 - ¢l)




Figure 5

Now assume that O,P,Q are the vertices of a triangular
mesh in positive orientation where O is the origin of the
sector S (See Figure 5). 1In order to find out what type of
element to use here, we study the interpolation problem for

a rectangular mesh where Pl - 0 , P4 - O and Cl = C4 , such

that |p,| = |P,| and arg P; = arg P, , arg P, = arg P, .
After some computation we find ¢ - O in (4.1l). This
means that we have to use an element of the form
p(z) = a + Br + yré , o,B,v ¢ ¢ . (4.8)

If we assume that P and Q have the polar coordinates
(rl,¢l) and (r2,¢2) respectively, then the interpolation

problem

P(O) =y 4 P(B) =2, , P(Q) =2y, Ly, 0,y Ly € €& (4.9)

has the solution
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and
Y = (-2, + £3)/6 (4.12)
where
Theorem 4.1. Let S be a circular sector subdivided into
meshes as described above and m. , j = 1,2 two neighboring
meshes sharing the common edge E = Ple . Let pj be an

element defined on mj where pj has the form (4.1) if mj

is a rectangular mesh or it has the form (4.8) if mj is a

triangular mesh, j = 1,2 |,
if
then
pl(z) = pz(z) for all =z ¢ E . (4.15)
Consequently,
py(z) for z « m,
p(z) = (4.16)
pz(z) for z ¢ m,
is continuous on m1 v m,
Proof: The elements(4.1) on :ectangular meshes as well as the

elements (4.8) on triangular meshes are linear on the edges of

their respective domain of definition.

. s it
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The element p introduced in (4.1) has the same form as
the element p defined in (3.1) and used for ordinary rectangles.
In order to see this, one has only to identify Re z with
r and Im z with ¢ . The consequence is that no particular
analysis besides the analysis for elements on ordinary rectangles
is required.
We end this section with the computation of the number of
free parameters in a complex planar spline on a circular sector.

The k(2 - 1) meshes distribute in (k - 1) (% - 1) rec-

tangular and ¢ - 1 triangular meshes. In order to make a piece-
wise defined function continuous we have to impose ¢(3k - 1) - 4k
conditions. The number of parameters is (& - 1) (4k - 1) leaving

¢k + 1 parameters free which is also the number of grid points.

5. LEAST SQUARE APPROXIMATION AND INTERPOLATION

WITH COMPLEX PLANAR SPLINES

If we want to approximate a complex valued function by com-
plex planar splines of a certain type, we end up with minimizing
a real valued functional defined in ¢N » N o« Fﬂ.

To treat such a problem it is not necessary to rewrite it

in real form. Let us assume that we have to handle the problem
. N
¢(a) = min , ¢ : ¢ - R (5.1)

where ¢ may also explicitly depend on a . 1If ¢ has con-

tinuous partial derivaties with respect to all components of




LR RIS

e

41

27.

Ja. ’ J 1,2,...,N , a = (al,a2,...,an) (5.2)

is a necessary condition for a being a minimum of ¢ . This

follows immediately from (1.5) and (1.6)
If g,h : ¢ ~» ¢N are complex-valued functions possessing
continuous partial derivatives with respect to a and a

’

then

(g)

a=95 ¢ (@3 =9, (5.3)
(gh), = g h + ghg (5.4)
g = £ (93) =ga§+g§=5% lsi® . (5.5)
and if g does not depend on a explicitly, then
L 191% = 9,3 . (5.6)

The least square problem can be treated along the lines
of Schultz (14, Ch. 6] as follows.

Let R be a compact set in ¢ subdividable in meshes
of the discussed form, f e L2(R) and V the linear space of
all complex planar splines where V = DATALTEREWA e and the
vj are the global form functions defined earlier
It should be noticed that the form functions are by definition
real.

The problem here is to minimize

, 3 =1,2,...,N

(PPN TOSPEUI Y%
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N
|2axdy , a = (aj,a,,....a9) < ¢ (5.7)

N
L

ola) = 1|f(z) -

a.v.
R 3 3]

1

Using (5.2) to (5.7), we obtain

N
9 i - v F -
5 ¢(a) R(kzl vy vy vjf)dxdy 0

which reduces to the linear system

Ca=r (5.C)
where
C = (cjk) = ;Vj Vi dxdy , j, k=1,2,...,N, (5.9)
r=(r) = ;f vy dxdy , 3 = 1,2,...,8 . (5.10)

Since C 1is a real matrix, the system (5.8) can be parti-

tioned into the two real systems,

CRea=Rer , CIma=Imnr, (5.11)

where Re a 1is the vector of the real parts of a ; analogous
meanings apply to Rer , Ima , and Im r .

Clearly (5.8) has a unique solution since ¢ is strictly
convex.

Let ¥ be the best least square approximation of f . The
error analysis can be directly taken from the real case (e.qg.

Schultz (14, Ch. 6]) since




W——

29,

]

£ - v f[Re(f = ¥) + i Im (f - v) ||

(5.12)

A

|[Re £ ~Re v| + |[Im £ - Im v ||

This means that the order of convergence is the same as
in the real case, but the convergence constants have to be
doubled, provided, of course, that Re f and Im f are of the
same smoothness.

An interpolation problem
viz,) = £(z,) , k = 1,2,...,K (5.13)

where v 1is a complex planar spline, f a given function, and
Zy k=1,2,...,K given grid points may be as well partitioned
into two real problems by splitting equation (5.13) into real

and imaginary parts. The above remarks on the error analysis

therefore apply also here.

6. A NUMERICAL EXAMPLE

We subdivide the standard triangle 0,l1,i in the usual way

by dividing its two smaller sides into 1/h = 2k

» k=0,1,...,5
pieces of equal length and divided the resulting little squares

of side length h diagonally by parallels through the hypothenuse
of the standard triangle. We obtained a complex planar spline

vy by interpolating the expc. 1tial function at the grid points

of that triangle.

In the following Table 1 we list the computed values
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e, = |lexp - v , the corresponding numerical convergence

h hlle
order ch of e, the maximal dilataion quotient dh over

all meshes (compare Formula (2.15)), and the corresponding

~

convergence order ch of dh .

Table 1: Spline interpolating the exponential function

on standard triangle.

h ey Cn dh <h
1 0.3730 1.54 2.229 1.45
1/2 0.1285 1.79 1.451 1.19
1/4 0.0372 1.90 1.198 1.09
1/8 0.0099%6 1.95 1.093 1.05
1/16 0.60257 1.98 1.045 1.03
1/32 0.000653 1.022

The fact that ey approaches zero with order two is
of course known {(schultz [14, Ch. 2]). According to our
computation the maximal dilatation approaches one with order
one. The number d, - 1 could be called deviation from con-
formality. To the best of our knowledge, neither
numerical values for the dilatation dh nor theoretical
investigations on the behavior of d as h - 0 exist in

h

literature.
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Figure 2: Neighboring triangles
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Figure 3: Neighboring rectangles
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Figure 4:

Sector S subdivided into rectangular
and triangular meshes
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Figure 5:

Triangular and rectangular mesh
of a circular sector
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